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This Letter describes a new microwave-assisted fluorination of azines using hydrated potassium fluoride
in untreated DMSO under atmospheric conditions. It is thought that microwave irradiation promotes
desolvation of the fluorine anion leading to halide nucleophilic substitution.
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Fluorinated azines are important organic compounds, with sev-
eral examples showing biological activity.1 Pyridines containing
the 18F isotope have been used in radiotherapy2,1b and positron
emission tomography as imaging agents.2e They are often utilized
as building blocks in the syntheses of biologically active com-
pounds, including naturally occurring examples.1,3 They are typi-
cally obtained via nucleophilic substitution reactions. As such,
pyridines containing leaving groups (Hal, R3N+, SO2R, and NO2) at
position 2 or 4 are often used as starting materials for the prepara-
tion of 2- or 4-fluoropyridines.4 As hydration significantly reduces
the nucleophilicity of the fluoride anion,5 these reactions are nor-
mally conducted in dry aprotic solvents (DMSO, DMF, and THF)
with the fluoride source introduced as a fine dry powder (due to
its low solubility in these solvents). At the same time, reactions
of 2- and 4-halogeno-pyridines with KF�2H2O or reactions in aque-
ous solutions were shown to be very slow and incomplete.
Although, considerable effort has gone into the development and
optimization of anhydrous conditions for the preparation of fluori-
nated pyridines, to the best of our knowledge, there are no reports
on these reactions in untreated solvents or in aqueous medium.

Recently we demonstrated a practical synthetic approach to-
wards 3-cyano-2-fluoropyrines based on nucleophilic substitution
of various leaving groups at the 2-position of the pyridine ring using
‘spray-dried’ KF or Bu4NF in dry DMF and DMSO.6 The developed
protocols offered good to high yields of the fluorinated pyridines,
however, they suffered from relatively harsh conditions, prolonged
reaction times, and the necessity to use anhydrous solvents and re-
agents. As such, 3-cyano-2-fluoropyridines 3a–c were obtained from
pyridines 1a–c by heating for eight hours at 140 �C (Table 1).6

As part of our research to develop mild and operationally simple
synthetic methods for fluorinated azines that use mild inexpensive
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reagents7 and untreated solvents, we were interested in the possi-
bility of using microwave irradiation, which can often accelerate
the rate of nucleophilic substitution.4 Microwave irradiation can
promote dehydration, desolvation, and dissociation processes.8

Thus, we decided to investigate this nucleophilic substitution reac-
tion of a series of substituted halogeno-azines under microwave
irradiation using readily available KF�2H2O in ‘non-dry’ dimethyl-
sulfoxide. As starting materials for these reactions we decided to
use halogeno-azines 1, which are stable and easy to handle, yet
can undergo a variety of transformations under very mild condi-
tions, and are readily accessible from inexpensive, commercially
available reagents.

2-Chloro-3-cyanopyridines 1a–e were reacted with KF�2H2O (2)
in DMSO in a sealed vessel using a focused microwave synthesis
system (CEM Discover BenchMate) under continuous stirring. The
incubation time was 90 s with a fixed 300 W microwave irradia-
tion power and a maximum temperature of 120 �C. Under these
conditions the highest yields of the target compounds were
achieved when the ratio of halogeno-azine to KF�2H2O was 1:2
(Scheme 1). Product azines 3a–e were purified on a silica gel col-
umn and were isolated in good to high yields (Table 1).9

Using the same conditions, thienopyrimidine 1f gave fluori-
nated compound 3f in a high 81% yield (Scheme 2, Table 1).

To demonstrate the general versatility of our method, we also
used non-activated pyridines (without the cyano group) in our
fluorination protocol. Halogeno-azines 1g,h required slightly long-
er reaction times (2 min (Tmax = 140 �C) for 3g (67% yield) and
4 min (Tmax = 180 �C) for 3h (62% yield); the prolonged reaction
times resulted in some decomposition of the final products.

The highest yields were achieved for the 3-cyano-2-fluoropyri-
dines 3a–e, suggesting that the strong electron-withdrawing effect
of the cyano group significantly accelerates the rate of the nucleo-
philic substitution. The identities and purities of compounds 3
were confirmed by mass spectrometry, and by 1H, 13C and 19F
NMR-spectroscopy.9



Table 1
Structures of starting materials 1 and yields of fluoroazines 3

Starting material Reaction product Yield (%)

‘Spray-dried’ KF, anhydrous DMSO,
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Reaction time—a90 s; b2 min; c4 min.
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Taking into account that nucleophilic substitution reactions of
azines 1 do not typically occur in untreated DMSO and KF�2H2O
under traditional heating, it is assumed that microwave irradiation
promotes dissociation of KF and desolvation of the fluorine anion,
which subsequently takes part in the nucleophilic substitution
reaction, like ‘spray-dried’ KF in anhydrous DMSO (Fig. 1).

In conclusion, we have developed a simple and efficient meth-
od for the fluorination of halogen-substituted azines using
KF�2H2O. The microwave-assisted reactions were conducted in
untreated DMSO under atmospheric conditions to yield the fluo-
rinated azines in moderate to high yields. To the best of our
knowledge, this is the first example of nucleophilic fluorination
conducted in aqueous solutions using untreated and inexpensive
reagents. Considering the operational simplicity of this method, it
may find a broad range of applications in the synthesis of fluori-
nated heterocycles. We are currently working on the develop-
ment of similar protocols for other aromatic molecules and
heterocycles.



Figure 1. Desolvation of the F� anion under microwave irradiation.
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Scheme 1. Microwave-assisted synthesis of 2-fluoropyridines 3.
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Scheme 2. Synthesis of substituted fluorothienopyridine 3f.
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